0=-16t^2+120t+20

Simple and best practice solution for 0=-16t^2+120t+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+120t+20 equation:



0=-16t^2+120t+20
We move all terms to the left:
0-(-16t^2+120t+20)=0
We add all the numbers together, and all the variables
-(-16t^2+120t+20)=0
We get rid of parentheses
16t^2-120t-20=0
a = 16; b = -120; c = -20;
Δ = b2-4ac
Δ = -1202-4·16·(-20)
Δ = 15680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15680}=\sqrt{3136*5}=\sqrt{3136}*\sqrt{5}=56\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-56\sqrt{5}}{2*16}=\frac{120-56\sqrt{5}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+56\sqrt{5}}{2*16}=\frac{120+56\sqrt{5}}{32} $

See similar equations:

| 2(m-3)+2m=4+3m | | x+8-(0)=10 | | 5x+11=50 | | 4/11=-17/22x | | 7x+4-2x+6=65 | | 0.0625*x=1 | | 5x+4(2x)=-13 | | 5x+36=9x+18 | | 2x+12=40. | | 3/5(15y-5)=5(2y+1) | | 42=2x-7 | | 3/5(15y-5)=5 | | -2.08-8.6u=-9.76+1.9u+8.7u | | Y²-4x-4=0 | | 4=3(r+7)−14 | | 13=48c | | XxX=x2 | | -3x+10=180 | | 7x-11=5{x-2}+2x | | 14x+10=11x+20 | | 2h+5(5h-12)=102 | | 9−3x=0 | | 4(x-4)-2=4(5x-3) | | 3x+23=5x-22 | | (2x+1)+x=22 | | 7=x/6-1 | | 10x=8x–20 | | -10-3k=10+k | | 100-3x=90 | | 3(6x−4)=22x | | 3p-7p+8=12+16 | | 25x+150=650 |

Equations solver categories